−1
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
|
|||||
---|---|---|---|---|---|
Cardinal | −1, minus one, negative one | ||||
Ordinal | −1st (negative first) | ||||
Arabic | −١ | ||||
Chinese numeral | 负一,负弌,负壹 | ||||
Bengali | −১ | ||||
Binary (byte) |
|
||||
Hex (byte) |
|
In mathematics, −1 is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0.
Negative one bears relation to Euler's identity since eπi = −1.
In software development, −1 is a common initial value for integers and is also used to show that a variable contains no useful information.
Negative one has some similar but slightly different properties to positive one.[1]
Contents
Algebraic properties
Multiplying a number by −1 is equivalent to changing the sign on the number. This can be proved using the distributive law and the axiom that 1 is the multiplicative identity: for x real, we have
where we used the fact that any real x times 0 equals 0, implied by cancellation from the equation
In other words,
so (−1) · x is the arithmetic inverse of x, or −x.
Square of −1
The square of −1, i.e. −1 multiplied by −1, equals 1. As a consequence, a product of two negative real numbers is positive.
For an algebraic proof of this result, start with the equation
The first equality follows from the above result. The second follows from the definition of −1 as additive inverse of 1: it is precisely that number that when added to 1 gives 0. Now, using the distributive law, we see that
The second equality follows from the fact that 1 is a multiplicative identity. But now adding 1 to both sides of this last equation implies
The above arguments hold in any ring, a concept of abstract algebra generalizing integers and real numbers.
Square roots of −1
The complex number i satisfies i2 = −1, and as such can be considered as a square root of −1. The only other complex number x satisfying the equation x2 = −1 is −i.[2] In the algebra of quaternions, containing the complex plane, the equation x2 = −1 has an infinity of solutions.
Exponentiation to negative integers
Exponentiation of a non-zero real number can be extended to negative integers. We make the definition that x−1 = <templatestyles src="Sfrac/styles.css" />1/x, meaning that we define raising a number to the power −1 to have the same effect as taking its reciprocal. This definition then extended to negative integers preserves the exponential law xaxb = x(a + b) for real numbers a and b.
Exponentiation to negative integers can be extended to invertible elements of a ring, by defining x−1 as the multiplicative inverse of x.
−1 that appears next to functions or matrices does not mean raising them to the power −1 but their inverse functions or inverse matrices. For example, f−1(x) is the inverse of f(x), or sin−1(x) is a notation of arcsine function.
Inductive dimension
The Inductive dimension of the empty set is defined to be −1.
Computer representation
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Most computer systems represent negative integers using two's complement. In such systems, −1 is represented using a bit pattern of all ones. For example, an 8-bit signed integer using two's complement would represent −1 as the bitstring "11111111", or "FF" in hexadecimal (base 16). If interpreted as an unsigned integer, the same bitstring of n ones represents 2n − 1, the largest possible value that n bits can hold. For example, the 8-bit string "11111111" above represents 28 − 1 = 255.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Mathematical analysis and applications By Jayant V. Deshpande, ISBN 1-84265-189-7
- ↑ Lua error in package.lua at line 80: module 'strict' not found.