List of numbers

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

This is a list of articles about numbers (not about numerals).

Rational numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Natural numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

(Notice: In set theory and computer science, 0 is a natural number)

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139
140 141 142 143 144 145 146 147 148 149
150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246
250 251 252 255 256 257
260 263 269
270 273 276 277
280 284
290
300 400 500 600 700 800 900
1000 2000 3000 4000 5000 6000 7000 8000 9000
10000 20000 30000 40000 50000 60000 70000 80000 90000
105 106 107 108 109
10100 1010100 Larger numbers

Powers of ten (scientific notation)

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Integers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Notable integers

Other numbers that are notable for their mathematical properties or cultural meanings include:

Named numbers

Prime numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A prime number is a positive integer which has exactly two divisors: one and itself.

The first 100 prime numbers are:

  2   3   5   7  11  13  17  19  23  29
 31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

Highly composite numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A highly composite number (HCN) is a positive integer with more divisors than any smaller positive integer. They are often used in geometry, grouping and time measurement.

The first 20 highly composite numbers (the seven values with more divisors than any lesser number than twice itself are in bold):

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560

Perfect numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).

The first 10 perfect numbers:

1 6
2 28
3 496
4 8128
5 33550336
6 8589869056
7 137438691328
8 2305843008139952128
9 2658455991569831744654692615953842176
10 191561942608236107294793378084303638130997321548169216

Cardinal numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In the following tables, [and] indicates that the word and is used in some dialects (such as British English), and omitted in other dialects (such as American English).

Small numbers

This table demonstrates the standard English construction of small cardinal numbers up to one hundred million—names for which all variants of English agree.

Value Name Alternate names, and names for sets of the given size
0 Zero aught, cipher, cypher, donut, goose egg, love, nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip, zippo
1 One ace, individual, single, singleton, unary, unit, unity
2 Two binary, brace, couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
3 Three deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika, hat-trick
4 Four foursome, quadruplet, quatern, quaternary, quaternity, quartet, tetrad
5 Five cinque, fin, fivesome, pentad, quint, quintet, quintuplet
6 Six half dozen, hexad, sestet, sextet, sextuplet, sise
7 Seven heptad, septet, septuple
8 Eight octad, octave, octet, octonary, octuplet, ogdoad
9 Nine ennead
10 Ten deca, decade
11 Eleven onze, ounze, ounce
12 Twelve dozen
13 Thirteen baker's dozen, long dozen[2]
14 Fourteen
15 Fifteen
16 Sixteen
17 Seventeen
18 Eighteen
19 Nineteen
20 Twenty score
21 Twenty-one long score[2]
22 Twenty-two Deuce-deuce
23 Twenty-three
24 Twenty-four two dozen
25 Twenty-five
26 Twenty-six
27 Twenty-seven
28 Twenty-eight
29 Twenty-nine
30 Thirty
31 Thirty-one
32 Thirty-two
40 Forty two-score
50 Fifty half-century
60 Sixty three-score
70 Seventy three-score and ten
80 Eighty four-score
87 Eighty-seven four-score and seven
90 Ninety four-score and ten
100 One hundred centred, century, ton, short hundred
101 One hundred [and] one
110 One hundred [and] ten
111 One hundred [and] eleven
120 One hundred [and] twenty long hundred,[2] great hundred, (obsolete) hundred
121 One hundred [and] twenty-one
144 One hundred [and] forty-four gross, dozen dozen, small gross
200 Two hundred
300 Three hundred
400 Four hundred
500 Five hundred
600 Six hundred
666 Six hundred [and] sixty-six Number of the Beast
700 Seven hundred
777 Seven hundred [and] seventy-seven Number of Luck
800 Eight hundred
900 Nine hundred
1000 One thousand chiliad, grand, G, thou, yard, kilo, k, millennium
1001 One thousand [and] one
1010 One thousand [and] ten
1011 One thousand [and] eleven
1024 One thousand [and] twenty-four kibi or kilo in computing, see binary prefix (kilo is shortened to K, Kibi to Ki)
1100 One thousand one hundred Eleven hundred
1101 One thousand one hundred [and] one
1728 One thousand seven hundred [and] twenty-eight great gross, long gross, dozen gross
2000 Two thousand
3000 Three thousand
10000 Ten thousand myriad, wan (China)
100000 One hundred thousand lakh
500000 Five hundred thousand crore (Iranian)
1000000 One million Mega, meg, mil, (often shortened to M)
1048576 One million forty-eight thousand five hundred [and] seventy-six Mibi or Mega in computing, see binary prefix (Mega is shortened to M, Mibi to Mi)
10000000 Ten million crore (Indian)(Pakistan)
100000000 One hundred million yi (China)

English names for powers of 10

This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See English numerals or names of large numbers for more information on naming numbers.

Short scale Long scale Power
Value American British
(Nicolas Chuquet)
Continental European
(Jacques Peletier du Mans)
of a thousand of a million
100 One 1000−1+1 10000000
101 Ten
102 Hundred
103 Thousand 10000+1 10000000.5
106 Million 10001+1 10000001
109 Billion Thousand million Milliard 10002+1 10000001.5
1012 Trillion Billion 10003+1 10000002
1015 Quadrillion Thousand billion Billiard 10004+1 10000002.5
1018 Quintillion Trillion 10005+1 10000003
1021 Sextillion Thousand trillion Trilliard 10006+1 10000003.5
1024 Septillion Quadrillion 10007+1 10000004
1027 Octillion Thousand quadrillion Quadrilliard 10008+1 10000004.5
1030 Nonillion Quintillion 10009+1 10000005
1033 Decillion Thousand quintillion Quintilliard 100010+1 10000005.5
1036 Undecillion Sextillion 100011+1 10000006
1039 Duodecillion Thousand sextillion Sextilliard 100012+1 10000006.5
1042 Tredecillion Septillion 100013+1 10000007
1045 Quattuordecillion Thousand septillion Septilliard 100014+1 10000007.5
1048 Quindecillion Octillion 100015+1 10000008
1051 Sexdecillion Thousand octillion Octilliard 100016+1 10000008.5
1054 Septendecillion Nonillion 100017+1 10000009
1057 Octodecillion Thousand nonillion Nonilliard 100018+1 10000009.5
1060 Novemdecillion Decillion 100019+1 100000010
1063 Vigintillion Thousand decillion Decilliard 100020+1 100000010.5
1066 Unvigintillion Undecillion 100021+1 100000011
1069 Duovigintillion Thousand undecillion Undecilliard 100022+1 100000011.5
1072 Trevigintillion Duodecillion 100023+1 100000012
1075 Quattuorvigintillion Thousand duodecillion Duodecilliard 100024+1 100000012.5
1078 Quinvigintillion Tredecillion 100025+1 100000013
... ... ... ... ...
1093 Trigintillion Thousand quindecillion Quindecilliard 100030+1 100000015.5
... ... ... ... ...
10120 Novemtrigintillion Vigintillion 100039+1 100000020
10123 Quadragintillion Thousand vigintillion Vigintilliard 100040+1 100000020.5
... ... ... ... ...
10153 Quinquagintillion Thousand quinvigintillion Quinvigintilliard 100050+1 100000025.5
... ... ... ... ...
10180 Novemquinquagintillion Trigintillion 100059+1 100000030
10183 Sexagintillion Thousand trigintillion Trigintilliard 100060+1 100000030.5
... ... ... ... ...
10213 Septuagintillion Thousand quintrigintillion Quintrigintilliard 100070+1 100000035.5
... ... ... ... ...
10240 Novemseptuagintillion Quadragintillion 100079+1 100000040
10243 Octogintillion Thousand quadragintillion Quadragintilliard 100080+1 100000040.5
... ... ... ... ...
10273 Nonagintillion Thousand quinquadragintillion Quinquadragintilliard 100090+1 100000045.5
... ... ... ... ...
10300 Novemnonagintillion Quinquagintillion 100099+1 100000050
10303 Centillion Thousand quinquagintillion Quinquagintilliard 1000100+1 100000050.5
... ... ... ...
10360 Sexagintillion 1000119+1 100000060
10420 Septuagintillion 1000139+1 100000070
10480 Octogintillion 1000159+1 100000080
10540 Nonagintillion 1000179+1 100000090
10600 Centillion 1000199+1 1000000100
10603 Ducentillion Thousand centillion Centilliard 1000200+1 1000000100.5

There is no consistent and widely accepted way to extend cardinals beyond centillion (centilliard).

Proposed systematic names for powers of 10

Myriad system

Proposed by Donald E. Knuth:

Value Name Notation
100 One 1
101 Ten 10
102 Hundred 100
103 Ten hundred 1000
104 Myriad 1,0000
105 Ten myriad 10,0000
106 Hundred myriad 100,0000
107 Ten hundred myriad 1000,0000
108 Myllion 1;0000,0000
1012 Myriad myllion 1,0000;0000,0000
1016 Byllion 1:0000,0000;0000,0000
1024 Myllion byllion 1;0000,0000:0000,0000;0000,0000
1032 Tryllion 1'0000,0000;0000,0000:0000,0000;0000,0000
1064 Quadryllion 1'0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000
10128 Quintyllion
10256 Sextyllion
10512 Septyllion
101024 Octyllion
102048 Nonyllion
104096 Decyllion
108192 Undecyllion
1016,384 Duodecyllion
1032,768 Tredecyllion
1065,536 Quattuordecyllion
10131,072 Quindecyllion
10262,144 Sexdecyllion
10524,288 Septendecyllion
101,048,576 Octodecyllion
102,097,152 Novemdecyllion
{10}^{\,\! 4\cdot 2^{20}} Vigintyllion
{10}^{\,\! 4\cdot 2^{30}} Trigintyllion
{10}^{\,\! 4 \cdot 2^{40}} Quadragintyllion
{10}^{\,\! 4 \cdot 2^{50}} Quinquagintyllion
{10}^{\,\! 4 \cdot 2^{60}} Sexagintyllion
{10}^{\,\! 4 \cdot 2^{70}} Septuagintyllion
{10}^{\,\! 4 \cdot 2^{80}} Octogintyllion
{10}^{\,\! 4 \cdot 2^{90}} Nonagintyllion
{10}^{\,\! 4 \cdot 2^{100}} Centyllion
{10}^{\,\! 4 \cdot 2^{1000}} Millyllion
{10}^{\,\! 4 \cdot 2^{10,000}} Myryllion
SI-derived
Value 1000m SI prefix Name Binary prefix 1024m=210m Value
1000 10001 k Kilo Ki 10241 1 024
1000000 10002 M Mega Mi 10242 1 048 576
1000000000 10003 G Giga Gi 10243 1 073 741 824
1000000000000 10004 T Tera Ti 10244 1 099 511 627 776
1000000000000000 10005 P Peta Pi 10245 1 125 899 906 842 624
1000000000000000000 10006 E Exa Ei 10246 1 152 921 504 606 846 976
1000000000000000000000 10007 Z Zetta Zi 10247 1 180 591 620 717 411 303 424
1000000000000000000000000 10008 Y Yotta Yi 10248 1 208 925 819 614 629 174 706 176

Fractional numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

This is a table of English names for positive rational numbers less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.

Keep in mind that rational numbers like 0.12 can be represented in infinitely many ways, e.g. zero-point-one-two (0.12), twelve percent (12%), three twenty-fifths (<templatestyles src="Sfrac/styles.css" />3/25), nine seventy-fifths (<templatestyles src="Sfrac/styles.css" />9/75), six fiftieths (<templatestyles src="Sfrac/styles.css" />6/50), twelve hundredths (<templatestyles src="Sfrac/styles.css" />12/100, twenty-four two-hundredths (<templatestyles src="Sfrac/styles.css" />24/200), etc.

Value Fraction Common names Alternative names
1 <templatestyles src="Sfrac/styles.css" />1/1 One 0.999..., Unity
0.9 <templatestyles src="Sfrac/styles.css" />9/10 Nine tenths, [zero] point nine
0.8 <templatestyles src="Sfrac/styles.css" />4/5 Four fifths, eight tenths, [zero] point eight
0.7 <templatestyles src="Sfrac/styles.css" />7/10 Seven tenths, [zero] point seven
0.6 <templatestyles src="Sfrac/styles.css" />3/5 Three fifths, six tenths, [zero] point six
0.5 <templatestyles src="Sfrac/styles.css" />1/2 One half, five tenths, [zero] point five
0.4 <templatestyles src="Sfrac/styles.css" />2/5 Two fifths, four tenths, [zero] point four
0.333333... <templatestyles src="Sfrac/styles.css" />1/3 One third
0.3 <templatestyles src="Sfrac/styles.css" />3/10 Three tenths, [zero] point three
0.25 <templatestyles src="Sfrac/styles.css" />1/4 One quarter, one fourth, twenty-five hundredths, [zero] point two five
0.2 <templatestyles src="Sfrac/styles.css" />1/5 One fifth, two tenths, [zero] point two
0.166666... <templatestyles src="Sfrac/styles.css" />1/6 One sixth
0.142857142857... <templatestyles src="Sfrac/styles.css" />1/7 One seventh
0.125 <templatestyles src="Sfrac/styles.css" />1/8 One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five
0.111111... <templatestyles src="Sfrac/styles.css" />1/9 One ninth
0.1 <templatestyles src="Sfrac/styles.css" />1/10 One tenth, [zero] point one One perdecime, one perdime
0.090909... <templatestyles src="Sfrac/styles.css" />1/11 One eleventh
0.09 <templatestyles src="Sfrac/styles.css" />9/100 Nine hundredths, [zero] point zero nine
0.083333... <templatestyles src="Sfrac/styles.css" />1/12 One twelfth
0.08 <templatestyles src="Sfrac/styles.css" />2/25 Two twenty-fifths, eight hundredths, [zero] point zero eight
0.0625 <templatestyles src="Sfrac/styles.css" />1/16 One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five
0.05 <templatestyles src="Sfrac/styles.css" />1/20 One twentieth, [zero] point zero five
0.047619047619... <templatestyles src="Sfrac/styles.css" />1/21 One twenty-first
0.045454545... <templatestyles src="Sfrac/styles.css" />1/22 One twenty-second
0.043478260869565217391304347... <templatestyles src="Sfrac/styles.css" />1/23 One twenty-third
0.033333... <templatestyles src="Sfrac/styles.css" />1/30 One thirtieth
0.016666... <templatestyles src="Sfrac/styles.css" />1/60 One sixtieth One minute
0.012345679012345679... <templatestyles src="Sfrac/styles.css" />1/81 One eighty-first
0.01 <templatestyles src="Sfrac/styles.css" />1/100 One hundredth, [zero] point zero one One percent
0.001 <templatestyles src="Sfrac/styles.css" />1/1000 One thousandth, [zero] point zero zero one One permille
0.000277777... <templatestyles src="Sfrac/styles.css" />1/3600 One thirty-six hundredth One second
0.0001 <templatestyles src="Sfrac/styles.css" />1/10000 One ten-thousandth, [zero] point zero zero zero one One myriadth, one permyria, one permyriad, one basis point
0.00001 <templatestyles src="Sfrac/styles.css" />1/100000 One hundred-thousandth One lakhth, one perlakh
0.000001 <templatestyles src="Sfrac/styles.css" />1/1000000 One millionth One perion, one ppm
0.0000001 <templatestyles src="Sfrac/styles.css" />1/10000000 One ten-millionth One crorth, one percrore
0.00000001 <templatestyles src="Sfrac/styles.css" />1/100000000 One hundred-millionth One awkth, one perawk
0.000000001 <templatestyles src="Sfrac/styles.css" />1/1000000000 One billionth (in some dialects) One ppb
0 <templatestyles src="Sfrac/styles.css" />0/1 Zero Nil

Irrational and suspected irrational numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Algebraic numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Expression Approximate value Notes
<templatestyles src="Sfrac/styles.css" />3/4 0.433012701892219323381861585376 Area of an equilateral triangle with side length 1.
<templatestyles src="Sfrac/styles.css" />5 − 1/2 0.618033988749894848204586834366 Golden ratio conjugate Φ, reciprocal of and one less than the golden ratio.
<templatestyles src="Sfrac/styles.css" />3/2 0.866025403784438646763723170753 Height of an equilateral triangle with side length 1.
122 1.059463094359295264561825294946 Twelfth root of two.
Proportion between the frequencies of adjacent semitones in the equal temperament scale.
<templatestyles src="Sfrac/styles.css" />32/4 1.060660171779821286601266543157 The size of the cube that satisfies Prince Rupert's cube.
32 1.259921049894873164767210607278 Cube root of two.
Length of the edge of a cube with volume two. See doubling the cube for the significance of this number.
1.303577269034296391257099112153 Conway's constant, defined as the unique positive real root of a certain polynomial of degree 71.
\sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}} 1.324717957244746025960908854478 Plastic number, the unique real root of the cubic equation x3 = x + 1.
2 1.414213562373095048801688724210 2 = 2 sin 45° = 2 cos 45°
Square root of two a.k.a. Pythagoras' constant.
Ratio of diagonal to side length in a square.
Proportion between the sides of paper sizes in the ISO 216 series (originally DIN 476 series).
\frac{1}{3}+\frac{2}{3\sqrt[3]{116+12\sqrt{93}}}+\frac{1}{6}\sqrt[3]{116+12\sqrt{93}} 1.465571231876768026656731225220 The limit to the ratio between subsequent numbers in the binary Look-and-say sequence.
\frac{\sqrt{5+2\sqrt{5}}}{2} 1.538841768587626701285145288018 Altitude of a regular pentagon with side length 1.
<templatestyles src="Sfrac/styles.css" />17 − 1/2 1.561552812808830274910704927987 The Triangular root of 2.
<templatestyles src="Sfrac/styles.css" />5 + 1/2 1.618033988749894848204586834366 Golden ratio (φ), the larger of the two real roots of x2 = x + 1.
\frac{5}{4\sqrt{5-2\sqrt{5}}} 1.720477400588966922759011977389 Area of a regular pentagon with side length 1.
3 1.732050807568877293527446341506 3 = 2 sin 60° = 2 cos 30°
Square root of three a.k.a. the measure of the fish.
Length of the space diagonal of a cube with edge length 1.
Length of the diagonal of a 1 × 2 rectangle.
Altitude of an equilateral triangle with side length 2.
Altitude of a regular hexagon with side length 1 and diagonal length 2.
\frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3} 1.839286755214161132551852564653 The Tribonacci constant.
Used in the formula for the volume of the snub cube and properties of some of its dual polyhedra.
It satisfies the equation x + x−3 = 2.
5 2.236067977499789696409173668731 Square root of five.
Length of the diagonal of a 1 × 2 rectangle.
Length of the diagonal of a 2 × 3 rectangle.
Length of the space diagonal of a 1 × 2 × 2 rectangular box.
2 + 1 2.414213562373095048801688724210 Silver ratioS), the larger of the two real roots of x2 = 2x + 1.
Altitude of an regular octagon with side length 1.
6 2.449489742783178098197284074706 2 · 3 = area of a 2 × 3 rectangle.
Length of the space diagonal of a 1 × 1 × 2 rectangular box.
Length of the diagonal of a 1 × 5 rectangle.
Length of the diagonal of a 2 × 2 rectangle.
Length of the diagonal of a square with side length 3.
<templatestyles src="Sfrac/styles.css" />33/2 2.598076113533159402911695122588 Area of a regular hexagon with side length 1.
7 2.645751311064590590501615753639 Length of the space diagonal of a 1 × 2 × 2 rectangular box.
Length of the diagonal of a 1 × 6 rectangle.
Length of the diagonal of a 2 × 3 rectangle.
Length of the diagonal of a 2 × 5 rectangle.
8 2.828427124746190097603377448419 22
Volume of a cube with edge length 2.
Length of the diagonal of a square with side length 2.
Length of the diagonal of a 1 × 7 rectangle.
Length of the diagonal of a 2 × 6 rectangle.
Length of the diagonal of a 3 × 5 rectangle.
10 3.162277660168379331998893544433 2 · 5 = area of a 2 × 5 rectangle.
Length of the diagonal of a 1 × 3 rectangle.
Length of the diagonal of a 2 × 6 rectangle.
Length of the diagonal of a 3 × 7 rectangle.
Length of the diagonal of a square with side length 5.
11 3.316624790355399849114932736671 Length of the space diagonal of a 1 × 1 × 3 rectangular box.
Length of the diagonal of a 1 × 10 rectangle.
Length of the diagonal of a 2 × 7 rectangle.
Length of the diagonal of a 3 × 2 rectangle.
Length of the diagonal of a 3 × 8 rectangle.
Length of the diagonal of a 5 × 6 rectangle.
12 3.464101615137754587054892683012 23
Length of the space diagonal of a cube with edge length 2.
Length of the diagonal of a 1 × 11 rectangle.
Length of the diagonal of a 2 × 8 rectangle.
Length of the diagonal of a 3 × 3 rectangle.
Length of the diagonal of a 2 × 10 rectangle.
Length of the diagonal of a 5 × 7 rectangle.
Length of the diagonal of a square with side length 6.

Transcendental numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Suspected transcendentals

Numbers not known with high precision

Hypercomplex numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Algebraic complex numbers

  • Imaginary unit: i = −1
  • nth roots of unity: ξkn = cos (2π <templatestyles src="Sfrac/styles.css" />k/n) + i sin (2π <templatestyles src="Sfrac/styles.css" />k/n)

Other hypercomplex numbers

Transfinite numbers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Numbers representing measured quantities

Numbers representing physical quantities

Numbers without specific values

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

Further reading

  • Kingdom of Infinite Number: A Field Guide by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3

External links