List of numbers
-
This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries.
This is a list of articles about numbers (not about numerals).
Contents
- 1 Rational numbers
- 2 Irrational and suspected irrational numbers
- 3 Hypercomplex numbers
- 4 Transfinite numbers
- 5 Numbers representing measured quantities
- 6 Numbers representing physical quantities
- 7 Numbers without specific values
- 8 See also
- 9 Notes
- 10 Further reading
- 11 External links
Rational numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Natural numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
(Notice: In set theory and computer science, 0 is a natural number)
Powers of ten (scientific notation)
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Integers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Notable integers
Other numbers that are notable for their mathematical properties or cultural meanings include:
- −40, the equal point in the Fahrenheit and Celsius scales.
- −1, the additive inverse of unity.
- 0, the additive identity.
- 1, the multiplicative identity.
- 2, the base of the binary number system, used in almost all modern computers and information systems. Also notable as the only even prime number.
- 3, is significant in Christianity as the Trinity
- 4, the first composite number
- 6, the first of the series of perfect numbers, whose proper factors sum to the number itself.
- 7, considered a "lucky" number in Western cultures.
- 8, considered a "lucky" number in Chinese culture.
- 9, the first odd number that is not prime nor a unit.
- 10, the number base for most modern counting systems.
- 12, the number base for some ancient counting systems and the basis for some modern measuring systems. Known as a dozen.
- 13, considered an "unlucky" number in Western superstition.
- 42, the "answer to the ultimate question of life, the universe, and everything" in the popular science fiction work The Hitchhiker's Guide to the Galaxy.
- 60, the number base for some ancient counting systems, such as the Babylonians', and the basis for many modern measuring systems.
- 144, a dozen times dozen, known as a gross.
- 255, 28 − 1, a Mersenne number and the smallest perfect totient number that is neither a power of three nor thrice a prime; it is also the largest number that can be represented using an 8-bit unsigned integer.
- 496, the third perfect number.
- 666, commonly known as the number of the beast.
- 786, regarded as sacred in the Muslim Abjad numerology.
- 1729, a taxicab number; the smallest positive integer that can be written as the sum of two positive cubes in two different ways; also known as the Hardy-Ramanujan number.[1]
- 5040, mentioned by Plato in the Laws as one of the most important numbers for the city. It is also the largest factorial (7! = 5040) that is also a highly composite number.
- 65535, 216 − 1, the maximum value of a 16-bit unsigned integer.
- 142857, the smallest base 10 cyclic number.
- 2147483647, 231 − 1, the maximum value of a 32-bit signed integer using two's complement representation.
- 9814072356, the largest perfect power that contains no repeated digits in base ten.
- 9223372036854775807, 263 − 1, the maximum value of a 64-bit signed integer using two's complement representation.
Named numbers
- Googol (10100) and googolplex (1010100)
- Graham's number
- Moser's number
- Shannon number
- Hardy–Ramanujan number (1,729)
- Skewes' number
- Number of the Beast (666)
- Kaprekar's constant (6,174)
- The Golden Ratio (1.618...)
Prime numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
A prime number is a positive integer which has exactly two divisors: one and itself.
The first 100 prime numbers are:
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 |
127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 |
233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 |
353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 |
467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
Highly composite numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
A highly composite number (HCN) is a positive integer with more divisors than any smaller positive integer. They are often used in geometry, grouping and time measurement.
The first 20 highly composite numbers (the seven values with more divisors than any lesser number than twice itself are in bold):
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560
Perfect numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).
The first 10 perfect numbers:
1 | 6 |
---|---|
2 | 28 |
3 | 496 |
4 | 8128 |
5 | 33550336 |
6 | 8589869056 |
7 | 137438691328 |
8 | 2305843008139952128 |
9 | 2658455991569831744654692615953842176 |
10 | 191561942608236107294793378084303638130997321548169216 |
Cardinal numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
In the following tables, [and] indicates that the word and is used in some dialects (such as British English), and omitted in other dialects (such as American English).
Small numbers
This table demonstrates the standard English construction of small cardinal numbers up to one hundred million—names for which all variants of English agree.
Value | Name | Alternate names, and names for sets of the given size |
---|---|---|
0 | Zero | aught, cipher, cypher, donut, goose egg, love, nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip, zippo |
1 | One | ace, individual, single, singleton, unary, unit, unity |
2 | Two | binary, brace, couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke |
3 | Three | deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika, hat-trick |
4 | Four | foursome, quadruplet, quatern, quaternary, quaternity, quartet, tetrad |
5 | Five | cinque, fin, fivesome, pentad, quint, quintet, quintuplet |
6 | Six | half dozen, hexad, sestet, sextet, sextuplet, sise |
7 | Seven | heptad, septet, septuple |
8 | Eight | octad, octave, octet, octonary, octuplet, ogdoad |
9 | Nine | ennead |
10 | Ten | deca, decade |
11 | Eleven | onze, ounze, ounce |
12 | Twelve | dozen |
13 | Thirteen | baker's dozen, long dozen[2] |
14 | Fourteen | |
15 | Fifteen | |
16 | Sixteen | |
17 | Seventeen | |
18 | Eighteen | |
19 | Nineteen | |
20 | Twenty | score |
21 | Twenty-one | long score[2] |
22 | Twenty-two | Deuce-deuce |
23 | Twenty-three | |
24 | Twenty-four | two dozen |
25 | Twenty-five | |
26 | Twenty-six | |
27 | Twenty-seven | |
28 | Twenty-eight | |
29 | Twenty-nine | |
30 | Thirty | |
31 | Thirty-one | |
32 | Thirty-two | |
40 | Forty | two-score |
50 | Fifty | half-century |
60 | Sixty | three-score |
70 | Seventy | three-score and ten |
80 | Eighty | four-score |
87 | Eighty-seven | four-score and seven |
90 | Ninety | four-score and ten |
100 | One hundred | centred, century, ton, short hundred |
101 | One hundred [and] one | |
110 | One hundred [and] ten | |
111 | One hundred [and] eleven | |
120 | One hundred [and] twenty | long hundred,[2] great hundred, (obsolete) hundred |
121 | One hundred [and] twenty-one | |
144 | One hundred [and] forty-four | gross, dozen dozen, small gross |
200 | Two hundred | |
300 | Three hundred | |
400 | Four hundred | |
500 | Five hundred | |
600 | Six hundred | |
666 | Six hundred [and] sixty-six | Number of the Beast |
700 | Seven hundred | |
777 | Seven hundred [and] seventy-seven | Number of Luck |
800 | Eight hundred | |
900 | Nine hundred | |
1000 | One thousand | chiliad, grand, G, thou, yard, kilo, k, millennium |
1001 | One thousand [and] one | |
1010 | One thousand [and] ten | |
1011 | One thousand [and] eleven | |
1024 | One thousand [and] twenty-four | kibi or kilo in computing, see binary prefix (kilo is shortened to K, Kibi to Ki) |
1100 | One thousand one hundred | Eleven hundred |
1101 | One thousand one hundred [and] one | |
1728 | One thousand seven hundred [and] twenty-eight | great gross, long gross, dozen gross |
2000 | Two thousand | |
3000 | Three thousand | |
10000 | Ten thousand | myriad, wan (China) |
100000 | One hundred thousand | lakh |
500000 | Five hundred thousand | crore (Iranian) |
1000000 | One million | Mega, meg, mil, (often shortened to M) |
1048576 | One million forty-eight thousand five hundred [and] seventy-six | Mibi or Mega in computing, see binary prefix (Mega is shortened to M, Mibi to Mi) |
10000000 | Ten million | crore (Indian)(Pakistan) |
100000000 | One hundred million | yi (China) |
English names for powers of 10
This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See English numerals or names of large numbers for more information on naming numbers.
Short scale | Long scale | Power | |||
---|---|---|---|---|---|
Value | American | British (Nicolas Chuquet) |
Continental European (Jacques Peletier du Mans) |
of a thousand | of a million |
100 | One | 1000−1+1 | 10000000 | ||
101 | Ten | ||||
102 | Hundred | ||||
103 | Thousand | 10000+1 | 10000000.5 | ||
106 | Million | 10001+1 | 10000001 | ||
109 | Billion | Thousand million | Milliard | 10002+1 | 10000001.5 |
1012 | Trillion | Billion | 10003+1 | 10000002 | |
1015 | Quadrillion | Thousand billion | Billiard | 10004+1 | 10000002.5 |
1018 | Quintillion | Trillion | 10005+1 | 10000003 | |
1021 | Sextillion | Thousand trillion | Trilliard | 10006+1 | 10000003.5 |
1024 | Septillion | Quadrillion | 10007+1 | 10000004 | |
1027 | Octillion | Thousand quadrillion | Quadrilliard | 10008+1 | 10000004.5 |
1030 | Nonillion | Quintillion | 10009+1 | 10000005 | |
1033 | Decillion | Thousand quintillion | Quintilliard | 100010+1 | 10000005.5 |
1036 | Undecillion | Sextillion | 100011+1 | 10000006 | |
1039 | Duodecillion | Thousand sextillion | Sextilliard | 100012+1 | 10000006.5 |
1042 | Tredecillion | Septillion | 100013+1 | 10000007 | |
1045 | Quattuordecillion | Thousand septillion | Septilliard | 100014+1 | 10000007.5 |
1048 | Quindecillion | Octillion | 100015+1 | 10000008 | |
1051 | Sexdecillion | Thousand octillion | Octilliard | 100016+1 | 10000008.5 |
1054 | Septendecillion | Nonillion | 100017+1 | 10000009 | |
1057 | Octodecillion | Thousand nonillion | Nonilliard | 100018+1 | 10000009.5 |
1060 | Novemdecillion | Decillion | 100019+1 | 100000010 | |
1063 | Vigintillion | Thousand decillion | Decilliard | 100020+1 | 100000010.5 |
1066 | Unvigintillion | Undecillion | 100021+1 | 100000011 | |
1069 | Duovigintillion | Thousand undecillion | Undecilliard | 100022+1 | 100000011.5 |
1072 | Trevigintillion | Duodecillion | 100023+1 | 100000012 | |
1075 | Quattuorvigintillion | Thousand duodecillion | Duodecilliard | 100024+1 | 100000012.5 |
1078 | Quinvigintillion | Tredecillion | 100025+1 | 100000013 | |
... | ... | ... | ... | ... | |
1093 | Trigintillion | Thousand quindecillion | Quindecilliard | 100030+1 | 100000015.5 |
... | ... | ... | ... | ... | |
10120 | Novemtrigintillion | Vigintillion | 100039+1 | 100000020 | |
10123 | Quadragintillion | Thousand vigintillion | Vigintilliard | 100040+1 | 100000020.5 |
... | ... | ... | ... | ... | |
10153 | Quinquagintillion | Thousand quinvigintillion | Quinvigintilliard | 100050+1 | 100000025.5 |
... | ... | ... | ... | ... | |
10180 | Novemquinquagintillion | Trigintillion | 100059+1 | 100000030 | |
10183 | Sexagintillion | Thousand trigintillion | Trigintilliard | 100060+1 | 100000030.5 |
... | ... | ... | ... | ... | |
10213 | Septuagintillion | Thousand quintrigintillion | Quintrigintilliard | 100070+1 | 100000035.5 |
... | ... | ... | ... | ... | |
10240 | Novemseptuagintillion | Quadragintillion | 100079+1 | 100000040 | |
10243 | Octogintillion | Thousand quadragintillion | Quadragintilliard | 100080+1 | 100000040.5 |
... | ... | ... | ... | ... | |
10273 | Nonagintillion | Thousand quinquadragintillion | Quinquadragintilliard | 100090+1 | 100000045.5 |
... | ... | ... | ... | ... | |
10300 | Novemnonagintillion | Quinquagintillion | 100099+1 | 100000050 | |
10303 | Centillion | Thousand quinquagintillion | Quinquagintilliard | 1000100+1 | 100000050.5 |
... | ... | ... | ... | ||
10360 | Sexagintillion | 1000119+1 | 100000060 | ||
10420 | Septuagintillion | 1000139+1 | 100000070 | ||
10480 | Octogintillion | 1000159+1 | 100000080 | ||
10540 | Nonagintillion | 1000179+1 | 100000090 | ||
10600 | Centillion | 1000199+1 | 1000000100 | ||
10603 | Ducentillion | Thousand centillion | Centilliard | 1000200+1 | 1000000100.5 |
There is no consistent and widely accepted way to extend cardinals beyond centillion (centilliard).
Proposed systematic names for powers of 10
Myriad system
Value | Name | Notation |
---|---|---|
100 | One | 1 |
101 | Ten | 10 |
102 | Hundred | 100 |
103 | Ten hundred | 1000 |
104 | Myriad | 1,0000 |
105 | Ten myriad | 10,0000 |
106 | Hundred myriad | 100,0000 |
107 | Ten hundred myriad | 1000,0000 |
108 | Myllion | 1;0000,0000 |
1012 | Myriad myllion | 1,0000;0000,0000 |
1016 | Byllion | 1:0000,0000;0000,0000 |
1024 | Myllion byllion | 1;0000,0000:0000,0000;0000,0000 |
1032 | Tryllion | 1'0000,0000;0000,0000:0000,0000;0000,0000 |
1064 | Quadryllion | 1'0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000 |
10128 | Quintyllion | |
10256 | Sextyllion | |
10512 | Septyllion | |
101024 | Octyllion | |
102048 | Nonyllion | |
104096 | Decyllion | |
108192 | Undecyllion | |
1016,384 | Duodecyllion | |
1032,768 | Tredecyllion | |
1065,536 | Quattuordecyllion | |
10131,072 | Quindecyllion | |
10262,144 | Sexdecyllion | |
10524,288 | Septendecyllion | |
101,048,576 | Octodecyllion | |
102,097,152 | Novemdecyllion | |
Vigintyllion | ||
Trigintyllion | ||
Quadragintyllion | ||
Quinquagintyllion | ||
Sexagintyllion | ||
Septuagintyllion | ||
Octogintyllion | ||
Nonagintyllion | ||
Centyllion | ||
Millyllion | ||
Myryllion |
SI-derived
Value | 1000m | SI prefix | Name | Binary prefix | 1024m=210m | Value |
---|---|---|---|---|---|---|
1000 | 10001 | k | Kilo | Ki | 10241 | 1 024 |
1000000 | 10002 | M | Mega | Mi | 10242 | 1 048 576 |
1000000000 | 10003 | G | Giga | Gi | 10243 | 1 073 741 824 |
1000000000000 | 10004 | T | Tera | Ti | 10244 | 1 099 511 627 776 |
1000000000000000 | 10005 | P | Peta | Pi | 10245 | 1 125 899 906 842 624 |
1000000000000000000 | 10006 | E | Exa | Ei | 10246 | 1 152 921 504 606 846 976 |
1000000000000000000000 | 10007 | Z | Zetta | Zi | 10247 | 1 180 591 620 717 411 303 424 |
1000000000000000000000000 | 10008 | Y | Yotta | Yi | 10248 | 1 208 925 819 614 629 174 706 176 |
Fractional numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
This is a table of English names for positive rational numbers less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.
Keep in mind that rational numbers like 0.12 can be represented in infinitely many ways, e.g. zero-point-one-two (0.12), twelve percent (12%), three twenty-fifths (<templatestyles src="Sfrac/styles.css" />3/25), nine seventy-fifths (<templatestyles src="Sfrac/styles.css" />9/75), six fiftieths (<templatestyles src="Sfrac/styles.css" />6/50), twelve hundredths (<templatestyles src="Sfrac/styles.css" />12/100, twenty-four two-hundredths (<templatestyles src="Sfrac/styles.css" />24/200), etc.
Value | Fraction | Common names | Alternative names |
---|---|---|---|
1 | <templatestyles src="Sfrac/styles.css" />1/1 | One | 0.999..., Unity |
0.9 | <templatestyles src="Sfrac/styles.css" />9/10 | Nine tenths, [zero] point nine | |
0.8 | <templatestyles src="Sfrac/styles.css" />4/5 | Four fifths, eight tenths, [zero] point eight | |
0.7 | <templatestyles src="Sfrac/styles.css" />7/10 | Seven tenths, [zero] point seven | |
0.6 | <templatestyles src="Sfrac/styles.css" />3/5 | Three fifths, six tenths, [zero] point six | |
0.5 | <templatestyles src="Sfrac/styles.css" />1/2 | One half, five tenths, [zero] point five | |
0.4 | <templatestyles src="Sfrac/styles.css" />2/5 | Two fifths, four tenths, [zero] point four | |
0.333333... | <templatestyles src="Sfrac/styles.css" />1/3 | One third | |
0.3 | <templatestyles src="Sfrac/styles.css" />3/10 | Three tenths, [zero] point three | |
0.25 | <templatestyles src="Sfrac/styles.css" />1/4 | One quarter, one fourth, twenty-five hundredths, [zero] point two five | |
0.2 | <templatestyles src="Sfrac/styles.css" />1/5 | One fifth, two tenths, [zero] point two | |
0.166666... | <templatestyles src="Sfrac/styles.css" />1/6 | One sixth | |
0.142857142857... | <templatestyles src="Sfrac/styles.css" />1/7 | One seventh | |
0.125 | <templatestyles src="Sfrac/styles.css" />1/8 | One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five | |
0.111111... | <templatestyles src="Sfrac/styles.css" />1/9 | One ninth | |
0.1 | <templatestyles src="Sfrac/styles.css" />1/10 | One tenth, [zero] point one | One perdecime, one perdime |
0.090909... | <templatestyles src="Sfrac/styles.css" />1/11 | One eleventh | |
0.09 | <templatestyles src="Sfrac/styles.css" />9/100 | Nine hundredths, [zero] point zero nine | |
0.083333... | <templatestyles src="Sfrac/styles.css" />1/12 | One twelfth | |
0.08 | <templatestyles src="Sfrac/styles.css" />2/25 | Two twenty-fifths, eight hundredths, [zero] point zero eight | |
0.0625 | <templatestyles src="Sfrac/styles.css" />1/16 | One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five | |
0.05 | <templatestyles src="Sfrac/styles.css" />1/20 | One twentieth, [zero] point zero five | |
0.047619047619... | <templatestyles src="Sfrac/styles.css" />1/21 | One twenty-first | |
0.045454545... | <templatestyles src="Sfrac/styles.css" />1/22 | One twenty-second | |
0.043478260869565217391304347... | <templatestyles src="Sfrac/styles.css" />1/23 | One twenty-third | |
0.033333... | <templatestyles src="Sfrac/styles.css" />1/30 | One thirtieth | |
0.016666... | <templatestyles src="Sfrac/styles.css" />1/60 | One sixtieth | One minute |
0.012345679012345679... | <templatestyles src="Sfrac/styles.css" />1/81 | One eighty-first | |
0.01 | <templatestyles src="Sfrac/styles.css" />1/100 | One hundredth, [zero] point zero one | One percent |
0.001 | <templatestyles src="Sfrac/styles.css" />1/1000 | One thousandth, [zero] point zero zero one | One permille |
0.000277777... | <templatestyles src="Sfrac/styles.css" />1/3600 | One thirty-six hundredth | One second |
0.0001 | <templatestyles src="Sfrac/styles.css" />1/10000 | One ten-thousandth, [zero] point zero zero zero one | One myriadth, one permyria, one permyriad, one basis point |
0.00001 | <templatestyles src="Sfrac/styles.css" />1/100000 | One hundred-thousandth | One lakhth, one perlakh |
0.000001 | <templatestyles src="Sfrac/styles.css" />1/1000000 | One millionth | One perion, one ppm |
0.0000001 | <templatestyles src="Sfrac/styles.css" />1/10000000 | One ten-millionth | One crorth, one percrore |
0.00000001 | <templatestyles src="Sfrac/styles.css" />1/100000000 | One hundred-millionth | One awkth, one perawk |
0.000000001 | <templatestyles src="Sfrac/styles.css" />1/1000000000 | One billionth (in some dialects) | One ppb |
0 | <templatestyles src="Sfrac/styles.css" />0/1 | Zero | Nil |
Irrational and suspected irrational numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Algebraic numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Expression | Approximate value | Notes |
---|---|---|
<templatestyles src="Sfrac/styles.css" />√3/4 | 0.433012701892219323381861585376 | Area of an equilateral triangle with side length 1. |
<templatestyles src="Sfrac/styles.css" />√5 − 1/2 | 0.618033988749894848204586834366 | Golden ratio conjugate Φ, reciprocal of and one less than the golden ratio. |
<templatestyles src="Sfrac/styles.css" />√3/2 | 0.866025403784438646763723170753 | Height of an equilateral triangle with side length 1. |
12√2 | 1.059463094359295264561825294946 | Twelfth root of two. Proportion between the frequencies of adjacent semitones in the equal temperament scale. |
<templatestyles src="Sfrac/styles.css" />3√2/4 | 1.060660171779821286601266543157 | The size of the cube that satisfies Prince Rupert's cube. |
3√2 | 1.259921049894873164767210607278 | Cube root of two. Length of the edge of a cube with volume two. See doubling the cube for the significance of this number. |
— | 1.303577269034296391257099112153 | Conway's constant, defined as the unique positive real root of a certain polynomial of degree 71. |
1.324717957244746025960908854478 | Plastic number, the unique real root of the cubic equation x3 = x + 1. | |
√2 | 1.414213562373095048801688724210 | √2 = 2 sin 45° = 2 cos 45° Square root of two a.k.a. Pythagoras' constant. Ratio of diagonal to side length in a square. Proportion between the sides of paper sizes in the ISO 216 series (originally DIN 476 series). |
1.465571231876768026656731225220 | The limit to the ratio between subsequent numbers in the binary Look-and-say sequence. | |
1.538841768587626701285145288018 | Altitude of a regular pentagon with side length 1. | |
<templatestyles src="Sfrac/styles.css" />√17 − 1/2 | 1.561552812808830274910704927987 | The Triangular root of 2. |
<templatestyles src="Sfrac/styles.css" />√5 + 1/2 | 1.618033988749894848204586834366 | Golden ratio (φ), the larger of the two real roots of x2 = x + 1. |
1.720477400588966922759011977389 | Area of a regular pentagon with side length 1. | |
√3 | 1.732050807568877293527446341506 | √3 = 2 sin 60° = 2 cos 30° Square root of three a.k.a. the measure of the fish. Length of the space diagonal of a cube with edge length 1. Length of the diagonal of a 1 × √2 rectangle. Altitude of an equilateral triangle with side length 2. Altitude of a regular hexagon with side length 1 and diagonal length 2. |
1.839286755214161132551852564653 | The Tribonacci constant. Used in the formula for the volume of the snub cube and properties of some of its dual polyhedra. It satisfies the equation x + x−3 = 2. |
|
√5 | 2.236067977499789696409173668731 | Square root of five. Length of the diagonal of a 1 × 2 rectangle. Length of the diagonal of a √2 × √3 rectangle. Length of the space diagonal of a 1 × √2 × √2 rectangular box. |
√2 + 1 | 2.414213562373095048801688724210 | Silver ratio (δS), the larger of the two real roots of x2 = 2x + 1. Altitude of an regular octagon with side length 1. |
√6 | 2.449489742783178098197284074706 | √2 · √3 = area of a √2 × √3 rectangle. Length of the space diagonal of a 1 × 1 × 2 rectangular box. Length of the diagonal of a 1 × √5 rectangle. Length of the diagonal of a 2 × √2 rectangle. Length of the diagonal of a square with side length √3. |
<templatestyles src="Sfrac/styles.css" />3√3/2 | 2.598076113533159402911695122588 | Area of a regular hexagon with side length 1. |
√7 | 2.645751311064590590501615753639 | Length of the space diagonal of a 1 × 2 × √2 rectangular box. Length of the diagonal of a 1 × √6 rectangle. Length of the diagonal of a 2 × √3 rectangle. Length of the diagonal of a √2 × √5 rectangle. |
√8 | 2.828427124746190097603377448419 | 2√2 Volume of a cube with edge length √2. Length of the diagonal of a square with side length 2. Length of the diagonal of a 1 × √7 rectangle. Length of the diagonal of a √2 × √6 rectangle. Length of the diagonal of a √3 × √5 rectangle. |
√10 | 3.162277660168379331998893544433 | √2 · √5 = area of a √2 × √5 rectangle. Length of the diagonal of a 1 × 3 rectangle. Length of the diagonal of a 2 × √6 rectangle. Length of the diagonal of a √3 × √7 rectangle. Length of the diagonal of a square with side length √5. |
√11 | 3.316624790355399849114932736671 | Length of the space diagonal of a 1 × 1 × 3 rectangular box. Length of the diagonal of a 1 × √10 rectangle. Length of the diagonal of a 2 × √7 rectangle. Length of the diagonal of a 3 × √2 rectangle. Length of the diagonal of a √3 × √8 rectangle. Length of the diagonal of a √5 × √6 rectangle. |
√12 | 3.464101615137754587054892683012 | 2√3 Length of the space diagonal of a cube with edge length 2. Length of the diagonal of a 1 × √11 rectangle. Length of the diagonal of a 2 × √8 rectangle. Length of the diagonal of a 3 × √3 rectangle. Length of the diagonal of a √2 × √10 rectangle. Length of the diagonal of a √5 × √7 rectangle. Length of the diagonal of a square with side length √6. |
Transcendental numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
- (−1)i = e−π = 0.0432139183...
- Liouville constant: c = 0.110001000000000000000001000...
- Champernowne constant: C10 = 0.12345678910111213141516...
- ii = √e−π = 0.207879576...
- <templatestyles src="Sfrac/styles.css" />1/π = 0.318309886183790671537767526745028724068919291480...[3]
- <templatestyles src="Sfrac/styles.css" />1/e = 0.367879441171442321595523770161460867445811131031...[3]
- Prouhet–Thue–Morse constant: τ = 0.412454033640...
- log10 e = 0.434294481903251827651128918916605082294397005803...[3]
- Omega constant: Ω = 0.5671432904097838729999686622...
- Cahen's constant: c = 0.64341054629...
- ln 2: 0.693147180559945309417232121458...
- <templatestyles src="Sfrac/styles.css" />π/√18 = 0.7404... the maximum density of sphere packing in three dimensional Euclidean space according to the Kepler conjecture[4]
- Gauss's constant: G = 0.8346268...
- <templatestyles src="Sfrac/styles.css" />π/√12 = 0.9068..., the fraction of the plane covered by the densest possible circle packing[5]
- ei + e−i = 2 cos 1 = 1.08060461...
- <templatestyles src="Sfrac/styles.css" />π4/90 = ζ(4) = 1.082323...[6]
- √2s: 1.559610469...[7]
- log2 3: 1.584962501... (the logarithm of any positive integer to any integer base greater than 1 is either rational or transcendental)
- Gaussian integral: √π = 1.772453850905516...
- Komornik–Loreti constant: q = 1.787231650...
- Universal parabolic constant: P2 = 2.29558714939...
- Gelfond–Schneider constant: √2√2 = 2.665144143...
- e = 2.718281828459045235360287471353...
- π = 3.141592653589793238462643383279...
- i√i = √eπ = 4.81047738...
- Tau, or 2π: τ = 6.283185307179586..., The ratio of the circumference to a radius, and the number of radians in a complete circle[8][9]
- Gelfond's constant: 23.14069263277925...
- Ramanujan's constant: eπ√163 = 262537412640768743.99999999999925...
Suspected transcendentals
- Z(1): −0.736305462867317734677899828925614672...
- Heath-Brown–Moroz constant: C = 0.001317641...
- Kepler–Bouwkamp constant: 0.1149420448...
- MRB constant: 0.187859...
- Meissel–Mertens constant: M = 0.2614972128476427837554268386086958590516...
- Bernstein's constant: β = 0.2801694990...
- Strongly carefree constant: 0.286747...[10]
- Gauss–Kuzmin–Wirsing constant: λ1 = 0.3036630029...[11]
- Hafner–Sarnak–McCurley constant: 0.3532363719...
- Artin's constant: 0.3739558136...
- Prime constant: ρ = 0.414682509851111660248109622...
- Carefree constant: 0.428249...[12]
- S(1): 0.438259147390354766076756696625152...
- F(1): 0.538079506912768419136387420407556...
- Stephens' constant: 0.575959...[13]
- Euler–Mascheroni constant: γ = 0.577215664901532860606512090082...
- Golomb–Dickman constant: λ = 0.62432998854355087099293638310083724...
- Twin prime constant: C2 = 0.660161815846869573927812110014...
- Copeland–Erdős constant: 0.235711131719232931374143...
- Feller-Tornier constant: 0.661317...[14]
- Laplace limit: ε = 0.6627434193...[1]
- Taniguchi's constant: 0.678234...[15]
- Continued Fraction Constant: C = 0.697774657964007982006790592551...[16]
- Embree–Trefethen constant: β* = 0.70258...
- Sarnak's constant: 0.723648...[17]
- Landau–Ramanujan constant: 0.76422365358922066299069873125...
- C(1): 0.77989340037682282947420641365...
- <templatestyles src="Sfrac/styles.css" />1/ζ(3) = 0.831907..., the probability that three random numbers have no common factor greater than 1.[4]
- Brun's constant for prime quadruplets: B2 = 0.8705883800...
- Quadratic class number constant: 0.881513...[18]
- Catalan's constant: G = 0.915965594177219015054603514932384110774...
- Viswanath's constant: σ(1) = 1.1319882487943...
- ζ(3) = 1.202056903159594285399738161511449990764986292..., also known as Apéry's constant, known to be irrational, but not known whether or not it is transcendental.[19]
- Vardi's constant: E = 1.264084735305...
- Glaisher–Kinkelin constant: A = 1.28242712...
- Mills' constant: A = 1.30637788386308069046...
- Totient summatory constant: 1.339784...[20]
- Ramanujan–Soldner constant: μ = 1.451369234883381050283968485892027449493...
- Backhouse's constant: 1.456074948...
- Favard constant: K1 = 1.57079633...
- Erdős–Borwein constant: E = 1.606695152415291763...
- Somos' quadratic recurrence constant: σ = 1.661687949633594121296...
- Niven's constant: c = 1.705211...
- Brun's constant: B2 = 1.902160583104...
- Landau's totient constant: 1.943596...[21]
- exp(−W0(−ln(3√3))) = 2.47805268028830..., the smaller solution to 3x = x3 and what, when put to the root of itself, is equal to 3 put to the root of itself.[22]
- Second Feigenbaum constant: α = 2.5029...
- Sierpiński's constant: K = 2.5849817595792532170658936...
- Barban's constant: 2.596536...[23]
- Khinchin's constant: K0 = 2.685452001...[2]
- Khinchin–Lévy constant: 1.1865691104...[3]
- Fransén–Robinson constant: F = 2.8077702420...
- Murata's constant: 2.826419...[24]
- Lévy's constant: γ = 3.275822918721811159787681882...
- Reciprocal Fibonacci constant: ψ = 3.359885666243177553172011302918927179688905133731...
- Van der Pauw's constant: <templatestyles src="Sfrac/styles.css" />π/ln 2 = 4.53236014182719380962...[25]
- First Feigenbaum constant: δ = 4.6692...
Numbers not known with high precision
- Landau's constant: 0.4330 < B < 0.472
- Bloch's constant: 0.4332 < B < 0.4719
- Landau's constant: 0.5 < L < 0.544
- Landau's constant: 0.5 < A < 0.7853
- Grothendieck constant: 1.57 < k < 2.3
Hypercomplex numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Algebraic complex numbers
- Imaginary unit: i = √−1
- nth roots of unity: ξkn = cos (2π <templatestyles src="Sfrac/styles.css" />k/n) + i sin (2π <templatestyles src="Sfrac/styles.css" />k/n)
Other hypercomplex numbers
- The quaternions
- The octonions
- The sedenions
- The dual numbers (with an infinitesimal)
Transfinite numbers
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
- Infinity in general: ∞
- Aleph-null: ℵ0: the smallest infinite cardinal, and the cardinality of ℕ, the set of natural numbers
- Aleph-one: ℵ1: the cardinality of ω1, the set of all countable ordinal numbers
- Beth-one: ℶ1 the cardinality of the continuum 2ℵ0
- ℭ or : the cardinality of the continuum 2ℵ0
- omega: ω, the smallest infinite ordinal
Numbers representing measured quantities
- Pair: 2 (the base of the binary numeral system)
- Dozen: 12 (the base of the duodecimal numeral system)
- Baker's dozen: 13
- Score: 20 (the base of the vigesimal numeral system)
- Gross: 144 (= 122)
- Great gross: 1728 (= 123)
Numbers representing physical quantities
- Avogadro constant: NA = 6.0221417930×1023 mol−1
- Coulomb's constant: ke = 8.987551787368×109 N·m2/C2 (m/F)
- Electronvolt: eV = 1.60217648740×10−19 J
- Electron relative atomic mass: Ar(e) = 0.0005485799094323...
- Fine structure constant: α = 0.007297352537650...
- Gravitational constant: G = 6.67384×10−11 N·(m/kg)2
- Molar mass constant: Mu = 0.001 kg/mol
- Planck constant: h = 6.6260689633×10−34 J · s
- Rydberg constant: R∞ = 10973731.56852773 m−1
- Speed of light in vacuum: c = 299792458 m/s
- Stefan-Boltzmann constant: σ = 5.670400×10−8 W · m−2 · K−4
Numbers without specific values
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
See also
Notes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Kingdom of Infinite Number: A Field Guide by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3
External links
- The Database of Number Correlations: 1 to 2000+
- What's Special About This Number? A Zoology of Numbers: from 0 to 500
- See how to write big numbers
- The MegaPenny Project – Visualizing big numbers
- About big numbers
- Robert P. Munafo's Large Numbers page
- Different notations for big numbers – by Susan Stepney
- Names for Large Numbers, in How Many? A Dictionary of Units of Measurement by Russ Rowlett
- What's Special About This Number? (from 0 to 9999)
- ↑ http://mathworld.wolfram.com/Hardy-RamanujanNumber.html
- ↑ 2.0 2.1 2.2 The shipmaster's assistant, and commercial digest
- ↑ 3.0 3.1 3.2 "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 27.
- ↑ 4.0 4.1 "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 29.
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 30.
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33.
- ↑ http://www.qbyte.org/puzzles/p029s.html
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 69
- ↑ Sequence A019692.
- ↑ A065473
- ↑ Weisstein, Eric W., "Gauss-Kuzmin-Wirsing Constant", MathWorld.
- ↑ A065464
- ↑ A065478
- ↑ A065493
- ↑ A175639
- ↑ http://mathworld.wolfram.com/ContinuedFractionConstant.html
- ↑ A065476
- ↑ A065465
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33
- ↑ A065483
- ↑ A082695
- ↑ A166928
- ↑ A175640
- ↑ A065485
- ↑ A163973