Askey scheme
From Infogalactic: the planetary knowledge core
In mathematics, the Askey scheme is a way of organizing orthogonal polynomials of hypergeometric or basic hypergeometric type into a hierarchy. For the classical orthogonal polynomials discussed in Andrews & Askey (1985), the Askey scheme was first drawn by Labelle (1985) and by Askey and Wilson (1985), and has since been extended by Koekoek & Swarttouw (1998) and Koekoek, Lesky & Swarttouw (2010) to cover basic orthogonal polynomials.
Askey scheme for hypergeometric orthogonal polynomials
Koekoek, Lesky & Swarttouw (2010, p.183) give the following version of the Askey scheme:
- 4F3
- Wilson | Racah
- 3F2
- Continuous dual Hahn | Continuous Hahn | Hahn | dual Hahn
- 2F1
- Meixner–Pollaczek | Jacobi | Pseudo Jacobi | Meixner | Krawtchouk
- 2F0/1F1
- Laguerre | Bessel | Charlier
- 1F0
- Hermite
Askey scheme for basic hypergeometric orthogonal polynomials
Koekoek, Lesky & Swarttouw (2010, p.413) give the following scheme for basic hypergeometric orthogonal polynomials:
- 43
- Askey–Wilson | q-Racah
- 32
- Continuous dual q-Hahn | Continuous q-Hahn | Big q-Jacobi | q-Hahn | dual q-Hahn
- 21
- Al-Salam–Chihara | q-Meixner–Pollaczek | Continuous q-Jacobi | Big q-Laguerre | Little q-Jacobi | q-Meixner | Quantum q-Krawtchouk | q-Krawtchouk | Affine q-Krawtchouk | Dual q-Krawtchouk
- 20/11
- Continuous big q-Hermite | Continuous q-Laguerre | Little q-Laguerre | q-Laguerre | q-Bessel | q-Charlier | Al-Salam–Carlitz I | Al-Salam–Carlitz II
- 10
- Continuous q-Hermite | Stieltjes–Wigert | Discrete q-Hermite I | Discrete q-Hermite II
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.