Euclidean relation
In mathematics, Euclidean relations are a class of binary relations that satisfy a modified form of transitivity that formalizes Euclid's "Common Notion 1" in The Elements: things which equal the same thing also equal one another.
Definition
A binary relation R on a set X is Euclidean (sometimes called right Euclidean) if it satisfies the following: for every a, b, c in X, if a is related to b and c, then b is related to c.[1]
To write this in predicate logic:
Dually, a relation R on X is left Euclidean if for every a, b, c in X, if b is related to a and c is related to a, then b is related to c:
Relation to transitivity
The property of being Euclidean is different from transitivity. Only if a transitive relation is also symmetric then it is Euclidean. Only a symmetric Euclidean relation is transitive.
A relation which is both Euclidean and reflexive is also symmetric and therefore an equivalence relation.[1]
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />