Hexamethylphosphoramide
Chemical structure of HMPA | |
3D stick model of HMPA | |
Names | |
---|---|
IUPAC name
Hexamethylphosphoramide
|
|
Preferred IUPAC name
Hexamethylphosphoric triamide
|
|
Other names
Hexametapol
HMPA |
|
Identifiers | |
680-31-9 | |
ChEBI | CHEBI:24565 |
ChemSpider | 12158 |
Jmol 3D model | Interactive image |
KEGG | C19250 |
PubChem | 12679 |
|
|
|
|
Properties | |
C6H18N3OP | |
Molar mass | 179.20 g/mol |
Appearance | clear, colorless liquid[1] |
Odor | aromatic, mild, amine-like[1] |
Density | 1.03 g/cm3 |
Melting point | 7.20 °C (44.96 °F; 280.35 K) |
Boiling point | 232.5 °C (450.5 °F; 505.6 K) CRC[2] |
miscible[1] | |
Vapor pressure | 0.03 mmHg (20°C)[1] |
Vapor pressure | {{{value}}} |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
verify (what is ?) | |
Infobox references | |
Hexamethylphosphoramide, often abbreviated HMPA, is a phosphoramide (i.e. an amide of phosphoric acid) having the formula [(CH3)2N]3PO. This colorless liquid is a useful polar aprotic solvent and additive in organic synthesis.
Contents
Structure and reactivity
HMPA is the oxide of the highly basic tertiary phosphine hexamethylphosphorous triamide (HMPT), P(NMe2)3. Like other phosphine oxides (e.g., triphenylphosphine oxide), the molecule has a tetrahedral core and a P-O bond that is highly polarized, with significant negative charge residing on the oxygen atom.
Compounds containing a nitrogen-phosphorus bond typically are degraded by hydrochloric acid to form a protonated amine and phosphate.
Applications
HMPA is a speciality solvent for polymers, gases, and organometallic compounds. It improves the selectivity of lithiation reactions by breaking up the oligomers of lithium bases such as butyllithium. Because HMPA selectively solvates cations, it accelerates otherwise slow SN2 reactions by generating more "naked" anions. The basic nitrogen centers in HMPA coordinate strongly to Li+.[3]
HMPA is a ligand in the useful reagents based on molybdenum peroxide complexes, e.g., MoO(O2)2(HMPA)(H2O) is used as an oxidant in organic synthesis.[4]
Alternative reagents
Dimethyl sulfoxide can often be used in place of HMPA as a solvent. Both are strong hydrogen bond acceptors, and their oxygen atoms bind metal cations. Other alternatives to HMPA include the tetraalkylureas[5] and the cyclic alkylureas like DMPU.[6]
Toxicity
HMPA is only mildly toxic but has been shown to cause nasal cancers in rats.[3] Still, many organic chemists regard HMPA as an exceptionally hazardous molecule due to its known carcinogenicity, and avoid its use when possible. HMPA can be degraded to less toxic compounds by the action of hydrochloric acid. For laboratory uses it can be substituted by the less carcinogenic solvent DMI.[7]
References
- ↑ 1.0 1.1 1.2 1.3 Cite error: Invalid
<ref>
tag; no text was provided for refs namedPGCH
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
External links
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Merck Index, 12th Edition, 4761.
Lua error in package.lua at line 80: module 'strict' not found.