Starstreak (missile)

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Starstreak
300px
Starstreak missile on display at the African Aerospace and Defence exhibition, September 2006
Type Manportable/Vehicle mounted surface-to-air missile
Place of origin United Kingdom
Service history
In service 1997–present
Used by See Operators
Production history
Designed 1980s
Manufacturer Thales Air Defence
Produced November 1986
Number built 7,000
Variants See Variants
Specifications (Starstreak High Velocity Missile)
Weight 14.00 kg (30.86 lb)[1]
Length 1.397 m (4 ft 7 in)
Diameter 13 cm (5.1 in)
Crew 1

Effective firing range Starstreak 0.3–7 km (0.19–4.35 mi), Starstreak II 7+km (4.35+ mi)[2][3]
Warhead Three explosive sub-munitions ("darts")
Warhead weight 3x2.0 lb (0.90 kg) tungsten alloy darts, 3x16 oz (450 g) PBX-98 per dart
Detonation
mechanism
Impact Delay

Engine First stage: Royal Ordnance 'Brambling' cast double-based propellant blip rocket motor.
Second stage: Royal Ordnance 'Titus' cast double-based propellant
Speed more than Mach 4 at second stage burnout
Guidance
system
SACLOS and SALH system

Starstreak is a British short range Man-portable air-defense system (MANPADS) manufactured by Thales Air Defence (formerly Shorts Missile Systems), in Belfast. It is also known as Starstreak HVM (High Velocity Missile). After launch, the missile accelerates to more than Mach 4,[4] making it the fastest short-range surface-to-air missile in the world.[5] It then launches three laser beam riding submunitions, increasing the likelihood of a successful hit on the target. Starstreak has been in service with the British Army since 1997. In 2012 Thales rebranded the system under the ForceSHIELD banner.[5]

Development

Development on the missile began in the early 1980s after an evaluation of missile and gun options to increase air defence capabilities showed that a high-velocity missile system would best meet the needs and could also replace existing shoulder-launched missiles. A General Staff Requirement (GSR 3979) [6] was drawn up with the requirements of the system, specifying the requirement of three launch platforms for the missile:

  • A self-propelled launcher.[6]
  • A three-round lightweight launcher.[6]
  • A man-portable launcher.[6]

In 1984, the British Ministry of Defence awarded development contracts to British Aerospace (BAe) and Shorts Missile Systems. The BAe missile was known as Thunderbolt. Shorts won the competition and were awarded the £356 million. Further development and a production contract materialized in November 1986, and the missile was officially accepted into service in September 1997. The missile was intended to replace the Javelin surface-to-air missile in British service.[6] The LML and shoulder-launched versions have been in use since 2000.[6]

In July 2001, Thales received a contract for a Successor Identification friend or foe system for Starstreak.[6]

In mid-2007, Thales UK in Northern Ireland revealed that it had developed Starstreak II, a much improved successor to the Starstreak missile. Some of the advantages included in this new missile are an improved range of 7 kilometres, an improved targeting system and the ability to operate it at much higher altitudes,[7] up to 16404 ft (5 km).[8]

In 2011, when it won a contract for the Lightweight Multirole Missile, Thales announced it agreed with the MOD to "re-role previously contracted budgets to facilitate the full-scale development, series production and introduction of the LMM." The contract affected is speculated to have been Starstreak.[9]

Starstreak II is a development of Starstreak aimed at increasing range beyond 7km and improving lethality.[2][3]

Description

File:Avenger 04.jpg
A Starstreak, just after being launched from an AN/TWQ-1 Avenger mobile, short-range air-defence platform

The Starstreak missile is transported in a sealed launch tube. This tube is attached to an aiming unit for firing. The operator tracks the target using the aiming unit's optically stabilized sight. The process of tracking the target allows the aiming unit to compute the right trajectory to bring the missile together with the target. The operator can indicate wind direction to the unit and, in the case of a long range target, provide superelevation. When the initial tracking is complete, the operator fires the missile by pressing a button.[6]

The missile then fires the first-stage rocket motor, which launches the missile from the tube – but burns out before leaving the tube to protect the operator. When the missile is a safe distance from the operator, the second stage fires, which rapidly accelerates the missile to burn out velocity of more than Mach 4 four hundred meters away from the operator. As the second stage burns out, the three dart sub-munitions are released.

Each dart consists of a rotating fore-body with two canard fins attached to a non-rotating rear assembly which has four fins. The rear assembly also houses the electronics that guide the missile. The dart housing is made from a tungsten alloy. The darts are each 396 millimetres (15.6 in) long with a diameter of 22 millimetres (0.87 in) and weigh about 900 grams (32 oz). Around half the weight of each dart, approximately 450 g (16 oz), is its explosive charge, detonated by a delayed-action, impact activated fuze.[6]

The missiles are guided by two laser beams projected into a two dimensional matrix by the aiming unit. The laser is modulated according to its position in the projected matrix. Earlier laser guidance systems used a single beam that had to be kept on the target at all times, if it moved off the target, the reflection would end and guidance would be lost until the target was regained. The problem could be reduced by making the laser's beam wider, but only at the cost of lowering the accuracy and reducing the amount of energy being reflected. Starstreak's system allows the painted area to be much larger than the aircraft while retaining pinpoint accuracy.

Each sub-munition contains its own seeker, which can determine the location of the target by examining the modulation of the laser. The sub-munitions steer by briefly decelerating the rotating fore-body with a clutch. The front wings then steer the missile in the appropriate direction. The three sub-munitions fly in a formation about 1.5 meters in radius, and have enough kinetic energy to manoeuvre to meet a target evading at 9 g at 7,000 meters.[6]

On impact with the target, a delayed action fuze is triggered. This gives time for the projectile to penetrate the target before the explosive warhead detonates. The tungsten housing is designed to fragment and produce maximum damage inside the target.[6]

A demonstration was conducted in September 1999 that showed the missile being used against an FV432 armoured personnel carrier, showing the missile's effectiveness as a surface-to-surface weapon.[6] Each sub-munition dart travelling at 1,250 metres per second (4,100 ft/s; 2,800 mph) has comparable kinetic energy to a shell from a Bofors 40 mm gun and probably has sufficient energy to penetrate the front armour of an infantry fighting vehicle. However, it lacks the armour penetration capabilities of a purpose-built anti-tank guided missile or of a dual purpose missile (such as the Air Defence Anti-Tank System).

Service history

In 2012, the Ministry of Defence announced that it would be placing a Starstreak detachment on top of a block of flats in London in preparation for the 2012 London Olympics. The Ministry claimed that the area was the only suitable location for an air defence detachment of the type. Some residents were upset and uncertain of the necessity of the detachment.[10][11] In 2013, the British MOD ordered 200 more Starstreak missiles.[12]

Variants

  • ATASK (Air To Air Starstreak): Fired from a helicopter. This was developed in combination with McDonnell-Douglas and Lockheed-Martin electronics between 1995 and 1998 specifically for use with the AH-64 Apache. It has yet to enter service.[6]
  • LML: Fired from a Lightweight Multiple Launcher (LML) that holds three missiles ready for firing and can be used as either a stationary launch unit or mounted on a light vehicle such as a Land Rover or HMMWV (Humvee). The LML originated in a proposal under the Army Suggestions Scheme for the Javelin system.[6]
  • Seastreak: Two versions of a naval mounting have been demonstrated—a one-man mount similar to the LML but carrying a total of six missiles, and a close in weapon system mounting holding 24 missiles.
  • SP HVM: Carried on an Alvis Stormer AFV with a roof mounted eight round launcher with internal stowage for a further 12 missiles.[6]
  • Starstreak Avenger: Built to a U.S. Army requirement in the early 1990s, this system integrated the Starstreak missile on the Boeing Avenger vehicle, replacing 1 pod of Stinger missiles with 1 pod of 4 Starstreak and modifying the fire control system accordingly.
  • Starstreak Mark II: Upgrade to the Starstreak.
  • THOR/Multi Mission System (MMS): A four missile turret mounted on a Pinzgauer (6x6) cross-country chassis,[13] unveiled by Thales UK in 2005.[14]
  • RapidRanger weapon launcher on URO VAMTAC vehicle

Advantages

Starstreak has a number of advantages over infrared homing guided, radar homing guided, and radio command guidance MCLOS/SACLOS (Blowpipe or Javelin) missiles:

  • It cannot be jammed by infrared countermeasures or radar/radio countermeasures.[15]
  • It cannot be suppressed with anti-radar missiles.[15]
  • Its high speed makes it more likely to be able to intercept a fast moving aircraft.
  • Three submunitions increase the size of the lethal area, increasing the probability that the target will be hit by at least one submunition.
  • Its high speed reduces the amount of time for effective usage of any potential countermeasure, such as the beam manoeuvring or illuminating the guidance laser source with a dazzling battlefield laser.

Disadvantages

  • The major disadvantage is the submunitions, having no proximity fuze, must collide with the target in order to harm it.
  • The guidance laser may be detected after the missile is fired, if the target aircraft is equipped with a suitable passive laser warning system. In contrast, to detect a passively guided Infrared homing missile requires MAWS detectors with significant disadvantages: radar-based closure-detecting style MAWS radiate an easily detectable signal that reveals the aircraft and may be used as an auxiliary homing signal by AA missiles, and Infrared launch signature detector-based MAWS tend to be subject to a high false alarm rate, which reduces attention paid them by the pilot.
  • Battlefield obscurants, such as smoke, can degrade the ability of the missile operator to see the target, and could potentially interfere with the guidance laser. This is also the case (to a slightly lesser extent) in misty or rainy conditions.
  • The training level of the operator is critical since, unlike infrared guided missiles, the operator has to track the target exactly with the sighting unit aimpoint (SACLOS). If the aircraft detects the targeting laser, it has the whole period of the missile flight time to engage in avoidance manoeuvres, which adds additional challenge to the missile operator's target-tracking task.

Operators

File:Starstreak operators.png
Map with Starstreak operators in blue
File:Starstreak launcher on Dartmoor.jpg
A Starstreak emplacement used in training on Dartmoor, England. One of the 3 missiles has already been fired

Current operators

 United Kingdom
  • SP HVM – Approx 30 systems for a front line establishment of 24 (156 originally purchased)
 South Africa
 Thailand
 Indonesia
  • Indonesian Army – First order was in November 2011, followed by a second but no deliveries were made and the contract was renegotiated in January 2014 to equip five batteries with Starstreak missiles, ControlMaster200 radars and weapon coordination systems, lightweight multiple launchers on LandRover Defenders and RapidRanger weapon launchers on Sherpa vehicles, at a cost of over £100m.[5][18]
 Malaysia
  • Malaysian Army - Ordered an undisclosed number of LML and vehicle-based variants in July 2015.[19]

See also

Notes

  1. https://www.thalesgroup.com/sites/default/files/asset/document/STARStreak_05_12.pdf
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 https://www.thalesgroup.com/sites/default/files/asset/document/Thales%20HVMII%2011_10.pdf
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. 15.0 15.1 Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Royal Thai Army selects STARStreak – Armyrecognition.com, November 16, 2012
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.

References

  • Lua error in package.lua at line 80: module 'strict' not found.

External links