Triangular function

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
File:Triangular function.svg
Triangular function
File:Triangle function.png
Triangle function (alternate)

The triangular function (also known as the triangle function, hat function, or tent function) is defined either as:


\begin{align}
\operatorname{tri}(t) = \and (t) \quad 
&\overset{\underset{\mathrm{def}}{}}{=} \ \max(1 - |t|, 0) \\
&= 
\begin{cases}
1 - |t|, & |t| < 1 \\
0, & \mbox{otherwise} 
\end{cases}
\end{align}

or, equivalently, as the convolution of two identical unit rectangular functions:


\begin{align}
\operatorname{tri}(t) = \operatorname{rect}(t) * \operatorname{rect}(t) \quad
&\overset{\underset{\mathrm{def}}{}}{=}  \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(t-\tau)\ d\tau\\
&= \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(\tau-t)\ d\tau .
\end{align}

The triangular function can also be represented as the product of the rectangular and absolute value functions:

 \operatorname{tri}(t) = \operatorname{rect}(t/2) \left ( 1 - \left |t \right | \right )

The function is useful in signal processing and communication systems engineering as a representation of an idealized signal, and as a prototype or kernel from which more realistic signals can be derived. It also has applications in pulse code modulation as a pulse shape for transmitting digital signals and as a matched filter for receiving the signals. It is also equivalent to the triangular window sometimes called the Bartlett window.

Note that in some cases the triangle function may be defined to have a base of length 1 instead of length 2:


\begin{align}
\operatorname{tri}(t) = \and (t) \quad 
&\overset{\underset{\mathrm{def}}{}}{=} \ \max(1 - |2t|, 0) \\
&= 
\begin{cases}
1 - |2t|, & |2t| < 1 \\
0, & \mbox{otherwise} 
\end{cases}
\end{align}

Scaling

For any parameter, a \ne 0\, :


\begin{align}
\operatorname{tri}(t/a) &= \int_{-\infty}^\infty \mathrm{rect}(\tau) \cdot \mathrm{rect}(\tau - t/a)\ d\tau \\
&= 
\begin{cases}
1 - |t/a|, & |t| < |a| \\
0, & \mbox{otherwise} .
\end{cases}
\end{align}

Fourier transform

The transform is easily determined using the convolution property of Fourier transforms and the Fourier transform of the rectangular function:


\begin{align}
\mathcal{F}\{\operatorname{tri}(t)\} 
&= \mathcal{F}\{\operatorname{rect}(t) * \operatorname{rect}(t)\}\\
&= \mathcal{F}\{\operatorname{rect}(t)\}\cdot \mathcal{F}\{\operatorname{rect}(t)\}\\
&= \mathcal{F}\{\operatorname{rect}(t)\}^2\\
&= \mathrm{sinc}^2(f),
\end{align}

where \operatorname{sinc}(x) = \sin(\pi x) / (\pi x) is the normalized sinc function.

Extended version to repeat tent in all R domain

|(x mod 2)-1|

See also

<templatestyles src="Asbox/styles.css"></templatestyles>

<templatestyles src="Asbox/styles.css"></templatestyles>