Tricarbon
Names | |
---|---|
Other names
Triatomic carbon[citation needed]
|
|
Identifiers | |
12075-35-3 | |
ChemSpider | 4937270 |
Jmol 3D model | Interactive image |
PubChem | 6432003 |
|
|
|
|
Properties | |
C3 | |
Molar mass | 36.03 g·mol−1 |
Thermochemistry | |
Std molar
entropy (S |
237.27 J K−1 mol−1 |
Std enthalpy of
formation (ΔfH |
820.06 kJ mol−1 |
Related compounds | |
Related alkanylidenes
|
Diatomic carbon |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
Infobox references | |
Tricarbon (systematically named 1λ2,3λ2-propadiene and μ-carbidodicarbon) is an inorganic compound with the chemical formula C
2(μ-C) (also written [C(μ-C)C] or C
3). It is a colourless gas that only persists in dilution or solution as an adduct. It is one of the simplest unsaturated carbenes.
It is a small carbon cluster first spectroscopically observed in the beginning 20th century in the tail of a comet by William Huggins and subsequently identified in stellar atmospheres. Tricarbon can be found in interstellar space and can be produced in the laboratory by a process called laser ablation. Small carbon clusters like tricarbon and dicarbon are regarded as soot precursors and are implicated in the formation of certain industrial diamonds and in the formation of fullerenes. The ground state molecular geometry of tricarbon has been identified as linear via its characteristic symmetric and antisymmetric stretching and bending vibrational modes and bears bond lengths of 129 to 130 picometer corresponding to those of alkenes. The ionization potential is determined experimentally at 11 to 13.5 electron-volts.[1] In contrast to the linear tricarbon molecule the C3+ cation is bent.
C3 has also been identified as a transient species in various combustion reactions.[citation needed]
The generation of C3 was investigated by Professor Emeritus Philip S. Skell of Pennsylvania State University in the 1960s.[citation needed]
Nomenclature
The systematic names 1λ2,3λ2-propadiene, and μ-carbidodicarbon, valid IUPAC names, are constructed according to the substitutive and additive nomenclatures, respectively.
In appropriate contexts, tricarbon can be viewed as propadiene with four hydrogen atoms removed, or as propane with eight electrons removed; and as such, propadienediylidene or propanetetraylidene, respectively, may be used as a context-specific systematic names, according to substitutive nomenclature. By default, these names pay no regard to the radicality of the tricarbon molecule. In even more specific context, these can also name the non-radical singlet state, whereas the diradical state is named propadienediylylidene, or propanediyldiylidene, and the tetraradical state is named propedienetetrayl or propanetetraylylidene.
See also
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Articles with unsourced statements from May 2012
- Articles without EBI source
- Articles without KEGG source
- Articles without UNII source
- Pages using collapsible list with both background and text-align in titlestyle
- Articles containing unverified chemical infoboxes
- Articles with unsourced statements from September 2009
- Astrochemistry
- Carbon forms