8-Hydroxyquinoline
Names | |
---|---|
IUPAC name
Quinolin-8-ol, 8-Quinolinol
|
|
Other names
1-azanaphthalene-8-ol, Fennosan H 30, hydroxybenzopyridine, hoxybenzopyridine, oxychinolin, oxyquinoline, phenopyridine, quinophenol, oxine
|
|
Identifiers | |
148-24-3 | |
ChEBI | CHEBI:48981 |
ChEMBL | ChEMBL310555 |
ChemSpider | 1847 |
Jmol 3D model | Interactive image Interactive image |
KEGG | D05321 |
PubChem | 1923 |
UNII | 5UTX5635HP |
|
|
|
|
Properties | |
C9H7NO | |
Molar mass | 145.16 g/mol |
Appearance | White crystalline needles |
Density | 1.034 g/cm3 |
Melting point | 76 °C (169 °F; 349 K) |
Boiling point | 276 °C (529 °F; 549 K) |
Pharmacology | |
ATC code | G01 A01AB07 D08AH03 R02AA14 |
Vapor pressure | {{{value}}} |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
verify (what is ?) | |
Infobox references | |
8-Hydroxyquinoline is an organic compound with the formula C9H7NO. It is a derivative of the heterocycle quinoline by placement of an OH group on carbon number 8. This light yellow compound is widely used commercially, although under a variety of names.[2][3]
Synthesis
It is usually prepared from quinoline-8-sulfonic acid and from a Skraup synthesis from 2-aminophenol.[4]
As a chelating agent
8-Hydroxyquinoline is a monoprotic bidentate chelating agent. In neutral solution, the hydroxyl is in the protonated form (pKa=9.89) and the nitrogen is not protonated (pKa=5.13).[5] However, an excited-state zwitterionic isomer exists in which H+ is transferred from the oxygen (giving an oxygen anion) to the nitrogen (giving a protonated nitrogen cation).[6]
Applications
The complexes as well as the heterocycle itself exhibit antiseptic, disinfectant, and pesticide properties,[7][8] functioning as a transcription inhibitor.[9] Its solution in alcohol is used in liquid bandages. It once was of interest as an anti-cancer drug.[10]
The reaction of 8-hydroxyquinoline with aluminium(III)[11] results in Alq3, a common component of organic light-emitting diodes (OLEDs). Variations in the substituents on the quinoline rings affect its luminescence properties.[12]
The roots of the invasive plant Centaurea diffusa release 8-hydroxyquinoline, which has a negative effect on plants that have not co-evolved with it.[13]
Hydroxyquinoline was used as a stabilizer of hydrogen peroxide in a rocket fuel oxidizer (T-Stoff) for the German Messerschmitt Me 163 Komet in World War 2.[citation needed]
Related compounds
Related ligands include the Schiff bases derived from salicylaldehyde, such as salicylaldoxime, salen, and salicylaldehyde isonicotinoylhydrazone (SIH). 8-Mercaptoquinoline is the thiol analogue of 8-hydroxyquinoline.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Nanjing Odyssey Chemicals
- ↑ Lua error in package.lua at line 80: module 'strict' not found.[dead link]
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.