Stericated 8-simplexes
![]() 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Stericated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bistericated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
80px Steritruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bisteritruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Stericantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bistericantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Stericantitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bistericantitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Steriruncinated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bisteriruncinated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Steriruncitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bisteriruncitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Steriruncicantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bisteriruncicantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Steriruncicantitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
80px Bisteriruncicantitruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a stericated 8-simplex is a convex uniform 8-polytope with 4th order truncations (sterication) of the regular 8-simplex. There are 16 unique sterications for the 8-simplex including permutations of truncation, cantellation, and runcination.
Contents
- 1 Stericated 8-simplex
- 2 Bistericated 8-simplex
- 3 Steritruncated 8-simplex
- 4 Bisteritruncated 8-simplex
- 5 Stericantellated 8-simplex
- 6 Bistericantellated 8-simplex
- 7 Stericantitruncated 8-simplex
- 8 Bistericantitruncated 8-simplex
- 9 Steriruncinated 8-simplex
- 10 Bisteriruncinated 8-simplex
- 11 Steriruncitruncated 8-simplex
- 12 Bisteriruncitruncated 8-simplex
- 13 Steriruncicantellated 8-simplex
- 14 Bisteriruncicantellated 8-simplex
- 15 Steriruncicantitruncated 8-simplex
- 16 Bisteriruncicantitruncated 8-simplex
- 17 Related polytopes
- 18 Notes
- 19 References
- 20 External links
Stericated 8-simplex
Stericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 6300 |
Vertices | 630 |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Coordinates
The Cartesian coordinates of the vertices of the stericated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericated 8-simplex
bistericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 12600 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Coordinates
The Cartesian coordinates of the vertices of the bistericated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Steritruncated 8-simplex
Steritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,1,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteritruncated 8-simplex
Bisteritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,2,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Stericantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Stericantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncinated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncinated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | 120pxpx | 120pxpx | 120pxpx | 120pxpx |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | 120pxpx | 120pxpx | 120pxpx | |
Dihedral symmetry | [5] | [4] | [3] |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 8D, uniform polytopes (polyzetta) x3o3o3o3x3o3o3o, o3x3o3o3o3x3o3o
External links
- Olshevsky, George, Cross polytope at Glossary for Hyperspace.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |